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On almost rigid rotations. Part 2 
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The dynamical properties of a fluid, occupying the space between two concentric 
rotating spheres, are considered, attention being focused on the case where the 
angular velocities of the spheres are only slightly different and the Reynolds 
number R of the flow is large. It is found that the flow properties differ inside and 
outside a cylinder V,  circumscribing the inner sphere and having its generators 
parallel to the axis of rotation. Outside V the fluid rotates as if rigid with the 
angular velocity of the outer sphere. Inside %' the fluid rotates with an 
angular velocity intermediate to the angular velocities of the two spheres and 
determined by the condition that the flux of fluid into the boundary layer of the 
faster-rotating sphere is equal to the flux out of the boundarylayer of the slower- 
rotating sphere at the same distance from the axis. The return of fluid is effected 
by a shear layer near %' and we show that it has a complicated structure for it can 
be divided into three separate layers, two outer ones, of thickness N R-9 and 
N R-$, and an inner layer of thickness N R--5. 

1. Introduction 
The study of shear layers of finite length, near surfaces parallel to the axis of 

rotation of a fluid, was initiated by Proudman (1956). They arose in his study of 
the almost rigid rotation of a viscous fluid between two concentric spheres, 
rotating about a common axis 1 with angular velocities sZ and sZ( 1 + 8) where 
e < 1. He found that the cylinder %?, circumscribing the inner sphere and having 
its generators parallel to 1, separated out regions with different secondary-flow 
properties. Outside V the fluid rotates as if solid with the angular velocity 
sZ( 1 + 6) of the outer sphere. Inside %' the angular velocity is almost uniform, the 
departure from the uniform state being determined by a balance of fluid expelled 
from the Ekman layer on the inner, and supposedly more slowly rotating? sphere 
to the fluid drawn into the Ekman layer on the outer and faster-rotating sphere. 
Such a balance is necessary for the fluid can only move, outside the boundary 
layers, on cylinders parallel to V. A return circuit for this fluid is provided 
by a shear layer on %?? which must also adjust the discontinuity in the angular 
velocity across V. Proudman speculated on the structure of this shear layer 
but without coming to any firm conclusions. 

The main difficulties with this shear layer are best understood in terms of the 
Reynolds number R = i2a2/v of the flow, where a is the radius of the inner sphere 
and v is the kinematic viscosity, and which we suppose is large. Then the rate at  
which fluid must be fed into the Ekman layers N R-5 and, if the viscous and 

9-2 



132 K.  Stewartson 

inertia terms are comparable in both equations of motion, the thickness of the 
shear layer - R-b, while theIaxial and the perturbed azimuthal velocities are of 
the same order of magnitude. Hence, in order to feed the Ekman layers, the 
perturbed azimuthal velocity - R--b while the discontinuity in angular velocity 
which must also be smoothed out NRO. On the other hand, if we make the 
perturbed azimuthal velocity N RO, the flux of fluid into the Ekman layers must 
be R-*. 

Alternatively, one might balance the viscous and inertia terms in one equation 
but not in the other. In this case the shear layer has thickness N R-f and the 
perturbed azimuthal velocity can be chosen - Ro with the axial velocity - R-4 
so that the flux of fluid into the Ekman layer - R-4, as desired. On the other hand 
the detailed structure of this shear layer appeared to be indeterminate. 

Most of these difficulties were removed in two subsequent papers. In  the first, 
with the same title as the present paper, Stewartson (1957) studied a related 
problem, but with a different geometry, namely, the flow between two parallel, 
differentially rotating, coaxial disks. The advantage of this geometry is that a 
full solution of the linearized equations can be formally written down, from 
which the limit structures as R+ m can be deduced. It was found that both types 
of shear layer envisaged by Proudman occur, the outer one (of thickness N R-l) 
smoothing out the discontinuity in the angular velocity, but not in its second 
derivative, and the inner (of thickness - R-%) completing the smoothing of the 
angular velocity and contributing to the feeding of the Ekman layers. 

Although the structure of the shear layer is clear for this special geometry, 
the formulation of appropriate boundary conditions, by which the structure 
could be elucidated in general, was first made by Jacobs (1964). He pointed out 
that since the Ekman boundary layer is much thinner than the shear layer 
(thickness - R-t as against N R-*) the compatibility condition on the fluid 
velocities just outside the Ekman layer must hold not only outside the shear layer 
but inside it too. Such a condition occurs at both ends of the shear layer in the 
rotating disks problem and completes the specification of the layer. 

There are two points in connexion with Jacobs’s paper which should be noted. 
First, Jacobs claimed that the shear layer can only exist if the flow outside 
satisfies a certain relation. If  true this implies that, like the Ekman layer, the 
shear layer exerts a control on fluid properties outside it. Secondly, his com- 
patibility conditions at  the ends of the shear layer were found on the assumption 
that the corresponding Ekman layer makes a non-zero angle with the shear layer. 
This requirement suggests that his ideas cannot be applied to Proudman’s 
problem because the shear layer almost touches the inner sphere. 

I disagree with Jacobs’s first contention and believe that the shear layer is 
derivative; i.e. it  is determined by the local properties of the inviscid and Ekman 
flows around it, not vice versa. As illustration we consider in the present paper 
the problem first studied by Proudman and we shall show that the main elements 
of the structure of the shear layer follow in this way. The main purpose of the 
paper, however, is to show that Jacobs’s second restriction is not necessary and 
that even when the Ekman layer is almost parallel to the shear layer the com- 
patibility condition can still be applied. 
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It is found that the equations governing the Ekman layer on the inner sphere 
are valid until one is within a distance N R-% of %'. Since the shear layer has 
a thickness N R-* at least, the region of invalidity of the Ekman layer occupies 
a negligible part of the shear layer, The shear layer itself may be divided into 
three parts. There are two outer layers, one outside $? of thickness N R-a in 
which the majority of fluid is transferred from one Ekman layer to the other, and 
one inside %?, of thickness - R-$, whose main purpose is to remove a singularity 
in the gradient of the azimuthal velocity. These layers are separated by an inner 
shear layer, of thickness N R-f, in which the discontinuity in the second derivative 
of the azimuthal velocity and the consequent discontinuity in the velocity, 

Shear layer 
near K 

FIGURE 1. Schematic drawing (not to scale) of the intersection region of the 
Ekman layer near the inner sphere and the shear layer near V.  

radially out from the axis, are smoothed out. In  this layer the azimuthal velocity 
N R-A, which is small, in contrast with the problem of the two rotating disks, 
where the perturbed azimuthal velocity in the inner shear layer - RO. The fact 
that it is not zero on %, however, means that the velocities in the inner shear 
layer develop singularities as the inner sphere is approached and it is shown that 
these are consistent with the structure of the layer formed by the merging of the 
Ekman and shear layers and implies that the fluid velocity in this layer N R-h. 
A schematic drawing of the intersection region of the Ekman layer near the inner 
sphere and the shear layer near $? is shown in figure 1. 

Proudman included a discussion of the conditions necessary for the lineariza- 
tion of the governing equation which all investigators have used. Applying his 
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arguments to the detailed flow properties found in this paper shows that as 
before the criterion is eR* 4 1. 

2. The statement of the problem 
Following Proudman (1956), let the radii of the inner and outer spheres be 

u and CLU respectively and let the corresponding angular velocities be Q and 
sl(1 + E )  where E is very small (but may be positive or negative). Let (CCT, 0, 4) 
denote spherical polar co-ordinates in which the line 0 = 0 coincides with the 
axis of rotation and let (uClu, aQv, aQw) be the corresponding components of 
velocity (see figure 2). 

P Q  (J+ c) 

By symmetry, all dynamical variables must be independent of 4 and the 
velocity components may be expressed in terms of two functions fi', XI, viz. : 

using the equation of continuity. The equations of momentum then reduce to 
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and - 

where 

and R is the Reynolds number of the flow, defined by 

R = a2Q/v,  
v being the kinematic viscosity. 

The boundary conditions for these equations are that 

135 

(2.3) 

(2.4) 

a$'lar = 9' = 0, x' = sin20 at  r = 1, (2.5) 

and a$-l/ar = $' = 0, x' = a2( 1 + 6 )  sin2 8 at r = a. 

When E = 0 this problem clearly has the exact solution 

$' = 0, x' = r2sin28 (2.6) 

and, when 6 is sufficiently small, we shall assume that it is legitimate to write 

$' = E$, x' = r2s in20+q,  (2.7) 

and to neglect squares of 6 .  The dynamical equations then reduce to 

and the boundary conditions to 

$ = a $ / & =  0, x =  0 at  r =  1 (2.10) 

and $ = a$/ar = 0, x = a2sin28 at  r = a. 

It also proves convenient to write down these equations in cylindrical polar 
co-ordinates (p, 4, c) where 

p = rsin0, c =  rcos0. (2.11) 

where 

(2.12) 

(2.13) 

(2.14) 

3. The boundary layers on the spheres 
As Proudman has pointed out, when the Reynolds number is large the viscous 

terms may reasonably be neglected except in the neighbourhood of certain 
singular surfaces. Such surfaces are the boundaries of the spheres and the 
cylinder $? circumscribing the inner sphere and having its generators parallel to 
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theaxis of rotation. Apart from these regions we have, directly from (2.12), (2.13) 

Thus, in the main body of the fluid there is no radial motion, while the axial and 
azimuthal components of velocity are independent of 5. This solution however 
fails to satisfy the boundary conditions on both spheres simultaneously and con- 
sequently there must be boundary layers set up in the neighbourhood of one or 
both of the spheres. Suppose that one is set up near the sphere r = 1. Then 
in it a/& B 1, while along the majority of its length aja6' N 1 since it is partly 
controlled by (3.1). Hence (2.8), (2.9) reduce to 

a4$/ar4 = 2R cos 0 ax/&, a2Xlar2 = - 2R cos 8 a$/&. (3.2) 

$- = a@/& = 0, x = 0, (3.3) 

The boundary conditions at the sphere r = 1 are 

while on leaving the boundary layer the solution must tend to (3.1). Proudman 
showed that this is only possible if 

x0 = ~ ( R c o s ~ ) * @ ~  (3.4) 

@ = $-o[l-e-~(cosq+sinq], x = ~ ~ [ l - e e - ~ c o s ~ ] ,  (3.5) 

and then, in the boundary layer, 

where q = ( r -  1) (Rcos0)a. 

Thus the azimuthal and axial components of velocity in the main core of the 
fluid, outside the shear layers, are not independent but satisfy a relation which 
may be put in the form 

In a similar way, from a study of the boundary layer on the outer sphere we 

(3.6) XO(P) = 2R*(l -P")'@o(P). 

find that 

and hence P2 
@ o h )  = [( 1 -p2/"2))  + (1 -p2)"-1, 

xo(p) = p2( 1 - p2)j [ ( 1 - p2/a2))' + ( 1 - p")'] -1 (3.9) 

provided p < 1. Inside % therefore the leading terms in the expansion of the 
velocities in the core about the point R-l= 0 are determined from the boundary 
layers on the two spheres. Outside % (3.6) is not relevant. On the basis of a 
linearized theory the possibility of a radial jet near the surface 6 = 0 can be ruled 
out (Proudman 1956) and the appropriate additional condition needed is that 

@ o = O  at  [ = O ,  p >  1, (3.10) 

which follows from symmetry considerations. In  consequence 

xo = p 2 ,  k0 = 0 in p > 1, (3.11) 

so that the fluid outside %? rotates as if solid with the angular velocity of the 
outer sphere. 
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Taking E > 0 for convenience, the secondary flow inside %? may be described 
as follows. Fluid is drawn into the boundary layer on the outer (and faster- 
rotating) sphere and, once in it, moves away from the axis of rotation towards %'. 
At %? it is presumably turned round, moves down %' in a shear layer, turns round 
near the circle of contact between %? and the inner sphere and moves back towards 
the axis in the boundary layer of the inner sphere. As it moves back it continually 
loses fluid which moves very slowly parallel to the axis of rotation towards the 
outer sphere and completes the circuit. The shear layer near $2 is also necessary 
to smooth out the discontinuity in the angular velocity for, from (3.9), (3.11), 

x O + O  as p - f l - ,  xo+l  as p + l + .  (3.12) 

Before studying it, however, it  is convenient to discuss the properties of the 
boundary layer on the inner sphere in the neighbourhood of p = 1. The simple 
form (3.5) taken by this boundary layer breaks down as O+Qn because then 
ajar formally tends to zero. The essential conditions that must be satisfied in 
order to reduce (2.8), (2.9) to (3.2) are that 

ajar $ ajaB and cos B ajar 3 alas. (3.13) 

Taking ajar N (R cos B)* and alas N ( in  - B)--l, the second condition is seen to be 
of greater significance and we can expect a modification in the equations to be 
necessary when 

cosO(RcosO)& - (+n-O)-l, i.e. i n - 0  N R-*. (3.14) 

The re-scaling necessary to make the equations formally independent of R when 
477-8 N R-B is 

x = x*, 9 = R-Q$*, +n - 8 = R-)@, r = 1 + hR-%. (3.15) 

It is noted, for future reference, that in this region we can write 

g = R-*ga, p = 1 + R-&J*, 

where c* = 0, y" = h-1@2. 2 (3.16) 

The equations governing x*, $* in the limit R+co may then be written in the 
alternative forms 

or (3.18) 

The appropriate boundary conditions for these equations will be briefly discussed 
in $ 7  below. 

t [Note added in proof.] An equivalent set of equations was written down by Roberts 
& Stewartson (1963) in their study of the stability of Maclaurin spheroids and by Carrier 
(1965). Carrier also indicated a method of solution by iteration, which depended on the 
terminal region being bounded in h and is not appropriate here. A solution for a region 
in which h is unbounded has recently been obtained, in numerical form, by J. M. Dowden 
(unpublished). 
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4. The shear layer: general remarks 
In the linearized theory, the fluid moving parallel to the axis of rotation, from 

the Ekman boundary layer on the inner sphere to the Ekman layer on the outer, 
must return via a shear layer near %(p = 1). This shear layer must also smooth 
out the discontinuity in the azimuthal velocity of the fluid across V, according 
to the theory in 9 3. In  such a layer differentiation with respect to p can be 
expected to have a magnifying effect when R 9 1, unlike differentiation with 
respect to <. Hence the governing equations (2.12), (2.13) simplify to 

a4$lap4 = 2~ axlac, azxiap2 = - 2~ a+.ja< (4.1) 

in this layer. Some of the appropriate boundary conditions for these equations 
can be written down in comparison with (3.8)-(3.11). We have, in fact, 

$ + O ,  x- f l  (4.2 a) 

as p - 1 -f 00 on the scale of the shear layer. It will be shown later that this is 
equivalent to requiring Rg@, x - 1 to be small when (p - 1) R* 9 1, but of course 
p - 1 being small. Further, retaining leading terms only, 

(4.2b) 

as p - 1 -+ - 00 on the scale of the shear layer. Here we have in mind that (4.2 b) 
holds when (1-p)R3 9 1. 

These boundary conditions were written down by Proudman but in themselves, 
as he pointed out, are not sufficient to solve the equations. In  addition conditions 
on x, $ at < = 0, (a2- 1)s are needed. For a related problem, involving two 
parallel, coaxially rotating disks Stewartson (1957) was able to complete the 
description of the flow in the shear layer because, fortuitously, a full solution of 
the basic equations (2.12), (2.13) is available. The way to determine the extra 
conditions at f; = 0,  (a2- 1)9 has recently been pointed out by Jacobs (1964). 
He observed that the shear layer has thickness of order R-3 at least, while the 
Ekman boundary layers are of thickness R-9. Hence, over almost the entire 
width of the shear layer, the magnifying effect of a/+, although large, is still 
smaller than the magnifying effect of a/ar in the Ekman layer and can therefore 
be neglected. It follows that the compatibility condition (3.7) of the Ekman 
boundary layer must be satisfied and we have 

1 -x = 2~B[(a2- I)/&+ a t  f; = (a2- I)&. (4.3) 
Jacobs restricted his observations to Ekman layers on surfaces intersecting 

a shear layer at  positive angles, which is not the case with the intersection of the 
shear layer a t  V and the inner sphere. It is legitimate however to extend his idea 
to such an intersection because the compatibility condition (3.6), at the outer 
edge of the Ekman layer, holds so long as 0 9 1, i.e. 

from (3.16). In  the shear layer 1 - p  N R-i and satisfies this criterion. Hence, for 
the leading terms in the expansion of $, x in descending powers of R is 

1-p 9 R-% (4-4) 

x = 2Rt[2(1 -p) ] :$  a t  5 = 0, (4.5) 
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provided p < 1. Finally 
$ = O  at  < = O ,  p > l ,  

from symmetry considerations and because a linearized theory forbids a radial 
jet to spread out from the equatorial plane of the inner sphere parallel to the 
6 direction. 

It is now established that usually this shear layer must be subdivided into 
three layers: an inner layer of thickness O(R-*) in which all terms of (4.1) are 
of the same order and the changes in x << 1,  and on either side of it an outer layer 
of thickness O(R-4) in which the dependence of x on 5 may be neglected and in 
which x N 1. The main purpose of the two outer layers is to adjust the azimuthal 
velocity x and this induces a secondary axial flow with a velocity O(R-i) .  The 
inner layer acts partly as a return pipe for this axial motion and partly to carry 
fluid from one Ekman layer to the other. 

Broadly speaking the same is true here but some modification is necessary in 
the light of (4.1) and will be discussed in the next section. 

5. The outer layers 
In these outer layers I (p - 1) R*J p 1, and, following Jacobs, we suppose that 

in them Q / a <  may be neglected. It follows that x is a function of p only and 
consequently 

wheref(p) is a function of p to be found. First of all we take p > 1 so that (4.6) 
holds at 5 = 0. Thenf(p) = 0 and hence, from the boundary condition (4.3) at 
5 = (a2- 1)6, J(a2- 1) a2x x -  1 B 

2 R  _ -  ap2 - --[L]. 2RB a2-1 (5 .2 )  

The solution of this differential equation which satisfies (4.2 b )  is 

(5.3 a )  
from which 

@ = (<a$A)/(2(a2- l ) i  R f )  exp - (Rkd(p - l)/(a2 - 1)Q), ( 5 . 3 b )  

where A is (at present) an arbitrary constant. It may now be confirmed from (4.1) 
that axlac = O(R- t )  and is negligible as assumed. It is noted that this outer 
boundary layer is of thickness O(R-k) and, apart from adjusting the azimuthal 
component of velocity, also transports fluid from the boundary layer on the 
faster-rotating sphere towards the boundary layer on the other. 

Secondly, we take p < 1 so that (4.5) holds at 5 = 0. Then 

x = 1 - A  exp - {Rkd(p - l) /(a2- 1)6}, 

and hence, using the condition (4.3) a t  6 = (a2 - 1)6 

(5.4) 

A solution is required which satisfies ( 4 . 2 ~ )  and this can formally be written as 
an expansion in descending powers of R whose coefficients are functions of 

s = (1  - p )  [R2/2(a2- 1)2]3 (5 .6 )  



where B is an arbitrary constant, later shown to be O(R-A), and 

F”(s)-s-kF(s) = 0,  with S ( 0 )  = 1, F(c0) = 0, (5.8) 
3 1 1  - s-l 4 9 2  = -1 with 9 ( 0 )  = 0, 9-s*  boundedas s+m. (5.9) 

It is noted in passing that 

S( s) = 2 (+).‘,%Kq(+sP)/ (4) ! , (5.10) 

where K$ is the Bessel function, of order $, of the second kind and with imaginary 
argument, so that 

F’(0) = - (4)s (-+)!/(+)!. (5.11) 

The corresponding value of @ is 

(5.12) 

In  contrast to the other layer this one is of thickness O(R-S), and the leading term 
is independent of the condition a t  6 = (a2 - 1)4. There is also a transport of fluid 
away from the inner sphere although none of it reaches the outer sphere, for the 
value of @ at 6 = ( R ~  - 1)* is actually slightly less when s N 1 than when s $ 1. 

6. The inner layer 
The solution given in the previous section must fail at p = 1, in some sense, 

because the second derivatives of x with respect to p and the values of 9 are not 
continuous there. An inner layer is therefore required to adjust these two 
quantities and it must be O(R-*) in thickness. However, in the solutions given, 
x and axlay are not continuous either, unless A and B satisfy certain conditions, 
and we shall now show that, if these conditions are not satisfied, then no solution 
of the inner layer can be found. 

First, suppose that, according to the solution in the outer shear layers, the 
inner layer has to adjust a discontinuity in x whose order of magnitude is 
RB (p < 0).  This would be the case if 1 - A  -B  = O(RP). In  the inner shear layer 
we then write 

p-1 = R-:u, x = B - I - R ~ ~ ~ + . . .  (6.1) 

the dots here and subsequently denoting that terms of higher order in R-l are 
omitted. It follows from the governing equations that @ may be written as 

@ = RB-:gl+ ..., (6.2) 

where fl, G1 are independent of R. The boundary condition at < = (a2- 1)i 
(4.3) then becomes 

B - 1 + RpX̂ l = - 2RP+&[(a2 - l)/a2]4$l, (6.3) 

and reduces to $1 = 0 (6.4) 
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in the limit R-+m provided that /3 > - +. The boundary condition at 5 = 0, 
p < 1 (4.5) becomes 

and reduces to (6.4) if /3 > - &. The boundary condition at 6 = 0, p > 1 (4.6) is 
already the same as (6.4). 

B + RB$l = 2[ - 2u]f $lRB+&- (6.5) 

Now integrate 
a z x p p 2  = - 2~ a$pg (6.6) 

with respect to 5, from 0 to (a2 - l)i, and, in terms of u, we get for the leading terms 

since = 0 at either end of the range of integration. It follows that 

is a linear function of u and, in consequence, cannot tend to two different finite 
values as u + 00. The discontinuity in x cannot therefore be an order of magni- 
tude greater than BR+. 

Secondly, suppose that x is continuous but axlap is not. Then 

X J B ,  a x / a u N  AR-fr as u+m, (6.9a) 

X j B ,  a x / a u ~ B R - h  as u-+--oo, ( 6 . 9 b )  

where we may take A ,  B to be bounded as R+m. In  the inner shear layer we 
write 

x = B+B$2RY+ ..., $ = B$,RY-*+ ..., (6.10) 

R+* and then BRY N R-1%. Again, the boundary con- 

$, = 0 (6.11) 

where y = -A, unless B 
dition at y = (a2 - l)* reduces to 

whatever the value of y. The boundary condition at < = 0, p < 1 becomes 

1+RYf2 = 2[-2”]f$,R~+i% (6.12) 

and also reduces to (6.11) since y+& > 0 from (6.9).  The argument leading to 
the exclusion of a discontinuity in x may now be repeated to show that the 
leading terms in axlap must be continuous at the inner edges of the outer shear 
layers. 

For parallel argument to succeed in excluding a discontinuity in azx/ap2 the 
necessary discontinuity must have an order of magnitude $ Ri, which is not 
satisfied in the present problem. 

For an inner layer to be possible therefore we must choose the unknown 
constants A and B to satisfy 

l - A  = B (6.13) 
(continuity of x at p = I ) ,  
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= BP’(0) [ 2(aFI ~~ )2]-‘ + 2+a*(a2 - l)-% R A  g’(0) + higher-order terms 
A R : ~  

( a 2 -  1)B 

(continuity of axlap at  p = l ) ,  i.e. 
a42+ 

( a 2 -  l ) W ’ ( O )  
B = - -. - R-& + . . . , 

(6.14) 

(6.15) 

from which A follows. The implication of (6.15) is that practically the whole of 
the change in azimuthal velocity occurs when p > 1, specifically p - 1 N R-a, and 
very little more is done, whenp < 1, than to flatten out the vertical tangent in the 
graph of x outside the shear layer. In  order to determine the leading terms in 
the inner layer write 

x = B+{(AR-i%a~) / (a2- l )~}u+R*X,  $ = T. (6.16) 

Then 3, X are of the same order of magnitude, which turns out to be R-E. They 
satisfy the differential equations 

and the following boundary conditions 

(6.17) 

(6.18 a) 

- 
(2) at 6 = 0 $ = 0  if u > 0 ,  

- 
$ = {BR-+s/2( - 2u)4} + O(R-i) if u < 0; (6.18b) 

(6.18 c) 

(3) asu+cc 
- aBCR-4 

+--., 9++2(a2- 3 + ... ; 
(4) asu+-cc 

Consequently, on expanding x, in descending powers of R the leading terms are 

(6.19) 
- - x = R-P%zl+ ..., $ = R-%pl+ .... 

Here xl, p1 satisfy (6.17) together with the boundary conditions 

$l = o at 6 = ( a 2 -  I)&, 1 
- 
- 

(6.20) 

as U+-CQ, 

= 0 at <=  0, u > 0 and pl= ( -2u)- iC at <=  0, 

- ( 1 - a2)8 - 6 
(1 - a2)6 

$1+0 as u+cc and (-2u)4g1+C---------- 

where c = 1BR’- 2 2 8 ,  (6.21) 

and is independent of R. The formal solution for pl, is 
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in which (0 - iw)% is a regular function of w ,  except on the negative imaginary 
axis, and equal to e-8%d when w is real and positive. I t  is not difficult to evaluate 
these integrals in terms of the residues at the poles of sinh [4w34( 1 - a71 and, 
when u < 0, an integral along the two sides of the negative imaginary axis. 
Further terms in the expansion of $1, Xl in descending powers of R may now be 
worked out in principle. One special feature of (6.22), however, calls for careful 
consideration, namely the behaviour of gl, Xl near 6 = u = 0. If for example we 
set 5 = 0 and suppose u is small and negative, (6.22) reduces to 

gY1 N ( - u)-i, (6.23) 

Such behaviour implying that ;tl-+03 and XI is non-integrable near v = 5 = 0 
seems hardly satisfactory at first sight. It will now be shown however that in 
fact it is in line with the match that the shear layer has to make with the form 
taken by the Ekman layer in the neighbourhood of p = 1, 5 = 0. For near 

(6.24) $1 = (C/ci+)Fl(CD), = (C/{i'*)F!(@), 
where @ = u /@ and 

- Xl N ( - u)-Q. 

- u = c = o  

(6.25 a) 

(6.25 b )  

It may be shown that, as @+ - co, F,(@) - ( -  @)-a and F2(@) - (-  @)-2 in 
agreement with (6.23). Now the assumed expansion of x, $ in descending powers 
of R ((6.16) and (6.19)) is no longer justified when the later terms of the series are 
the same order of magnitude as the earlier ones. In  the case of x this occurs when 

i.e. (6.26) 

Taking CD = O(1) this implies that 

5 N R-*, p- 1 N R-Z, (6.27) 

exactly the order of magnitude of <, p when the Ekman-layer equations change 
character. The orders of magnitude are unaffected if we suppose / @ I  9 1 for 

(6.28) 

so that the ratio of the orders of magnitude of $, x is as required in (3.15). We 
conclude that in principle a match may be effected between the shear layer 
and the modified Ekman layer and that, using the notation of (3.16)) 

then> when (6*27) $ R-.%&-%, B R-& 



144 K. Stewartson 

when y*, <* are large. Since the governing equations in the limiting Ekman layer 
and the shear layer are the same it is reasonable to expect [although it has not 
been comprehensively checked] that further terms in the expansion of 2, 9 in 
descending powers of R will, when (6.27) is satisfied, lead to further terms in (6.29) 
of order R-h at most. The behaviour of the shear layer near p = 1, < = 0 is 
accordingly acceptable. 

7. The terminal form of the Ekman layer on the inner sphere 
The differential equations satisfied by x*, $* are set out in (3.18) and one set 

of boundary conditions are given in (6.29). Since the boundary of the sphere is 
h = 0 (3.15), in terms of y*, <* it  is given by 

(7 .1 )  y* = - 1 *2 
2 c  

and here $* = a$*/ah = x* = 0. (7 .2 )  

$* = ax*/ao = ax*/a<* = 0. (7.3) 

Further on the line of symmetry {* = 0, y* > 0 

The boundary conditions (6.29) only hold when we are well away from the sphere, 
strictly when <* is large and c* N Y * ~ .  Near the sphere x*, $* must match with 
the Ekman solution as 0 -+ cc so that 

x*+2CR-A[1 -e-v* cosy"], (7.4 a )  

20+$*-+2CR*[1 -e-v*(cosq*+siny*)] (7.4 b )  

as @+co for fixed A@+ = y*. These two sets of conditions (6.29) and (7.4) matxh 
when q* is large and y*/c** is large and negative. 

It appears that the boundary conditions set here [(6.29), (7.2), (7.3), (7.4)] 
are consistent and sufficient to determine x*, $* in principle although no proof 
is available. It may be, however, that not all are necessary for it seems likely 
that (6.29) is implied by (7.4). 
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